# Analysis of substituent effects: the reactions of some 2-L-5-nitro-3-X-thiophenes with primary and secondary amines in methanol

Giovanni Consiglio,\*<sup>*a*</sup> Vincenzo Frenna,<sup>*b*</sup> Susanna Guernelli,<sup>*a*</sup> Gabriella Macaluso<sup>*b*</sup> and Domenico Spinelli<sup>*a*</sup>

<sup>a</sup> Dipartimento di Chimica Organica 'A. Mangini', Via S. Donato 15, I-40127, Bologna, Italia

<sup>b</sup> Dipartimento di Chimica Organica 'E. Paternò', Viale delle Scienze, Parco D'Orleans II, I-90128, Palermo, Italia

Received (in Cambridge, UK) 18th December 2001, Accepted 7th March 2002 First published as an Advance Article on the web 4th April 2002

The kinetics of the reactions of some 2-L-5-nitro-3-X-thiophenes with primary and secondary amines in methanol at various temperatures have been studied with the aim of obtaining information about the proximity effects of 3-X *ortho*-like substituents. The results obtained have shown that for all the substituents considered, except for X = Br, the proximity effects of steric nature are of little relevance with respect to the electronic ones. Thus, it has been possible to establish a set of *ortho* sigma constants which account well for the electronic effects of 3-X substituents and to obtain excellent linear free energy *ortho*-correlations.

## Introduction

After the authoritative review and book published by J. F. Bunnett<sup>1</sup> and J. Miller,<sup>2</sup> respectively, many papers and reviews concerning the field of nucleophilic aromatic substitutions ( $S_N$ -Ar) have been published. Among these, it is worthwhile mentioning the outstanding reviews written by C. F. Bernasconi<sup>3</sup> and F. Terrier.<sup>4</sup>

The subject of  $S_NAr$  reactions continues to attract the interest of many research workers. For example, some recent work has been dealing with the regioselectivity in polynitroarene anionic  $\sigma$ -adduct formation,<sup>5</sup> with the first isolation of a  $\pi$ complex precursor in Meisenheimer complex formation, and with base catalysis in aromatic nucleophilic substitutions.<sup>6</sup>

Compared with the overwhelming quantity of papers concerning the application of the Hammett equation to benzene compounds, after the review published by Tomasik and Johnson<sup>7</sup> the corresponding studies on heterocyclic compounds have received less and only occasional attention.

In this and in the following paper<sup>8</sup> we report a kinetic study of the reactions of some 2-L-5-nitro-3-X-thiophenes 1-3with some primary and secondary amines in methanol and in benzene (Scheme 1).

This study was aimed at obtaining information about the overall effect of *ortho*-like substituents in  $S_NAr$  reactions of thiophene substrates and at exploring the possibility of carrying out linear free energy *ortho*-correlations.

The substrates used present an activating nitro group fixed at

C-5 and a variable substituent at C-3, that is, at an *ortho*-like position with respect to the reaction centre at C-2.

The 3-substituents chosen are: i) hydrogen (X = H) as a landmark, even though the corresponding substrate has to be considered as just being "not substituted"; ii) methyl and bromine, two "*ortho*"-substituents with a similar van der Waals' encumbrance<sup>9</sup> but very different firmness and solidity; iii) some sp<sup>2</sup> groups (X = CONH<sub>2</sub>, CO<sub>2</sub>Me, COMe) with the same geometry around the carbonyl carbon atom but with different "external" and "internal" conjugative interactions and different steric encumbrance; iv) methylsulfonyl substituent (X = SO<sub>2</sub>Me), a group with electronic effects comparable <sup>10</sup> to those of the acetyl group (X = COMe) but with a tetrahedral geometry much more "compressive" with respect to the adjacent reaction centre; v) the cyano group (X = CN), a strong electron-withdrawing substituent with a "linear" geometry; and finally vi) the nitro group (X = NO<sub>2</sub>), with a nearly "planar" geometry.<sup>11</sup>

The presence of a substituent in an "*ortho*" position with respect to the reaction centre can influence the reaction pathway as a function of three main factors:

a) the activation degree of the substrate; b) the primary <sup>12</sup> and secondary <sup>13</sup> kinetic steric effects as a function of the features of nucleophile and nucleofuge; c) the eventual anchimeric assistance <sup>14</sup> in the intermediate decomposition as a function of nucleophile, nucleofuge and the solvent.

The nucleophiles chosen for this study are three secondary cyclic amines, pyrrolidine (PYRH), piperidine (PIPH) and



AmH = pyrrolidine (PYRH), piperidine (PIPH), morpholine (MORH), *N*-benzylmethylamine (BMAH), *n*-butylamine (BuAH), benzylamine (BzAH)

1: L = Br, 2: L = OC<sub>6</sub>H<sub>5</sub>, 3: L = OC<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>-p

a: X = CH<sub>3</sub>, b: X = H, c: X = Br, d: X = CONH<sub>2</sub>, e: X = CO<sub>2</sub>CH<sub>3</sub>, f: X = COCH<sub>3</sub>, g: X = SO<sub>2</sub>CH<sub>3</sub>, h: X = CN, i: X = NO<sub>2</sub>

4: Am = PYR, 5: Am = PIP, 6: Am = MORF, 7: Am = BMA, 8: Am = BuA, 9: Am = BzA

Scheme 1

DOI: 10.1039/b111541c

J. Chem. Soc., Perkin Trans. 2, 2002, 965–970 965

morpholine (MORH) for which different structural and conformational peculiarities are expected,<sup>15</sup> two primary amines, *n*-butylamine (BuAH) and benzylamine (BzAH); and an acyclic secondary amine, *N*-benzylmethylamine (BMAH), which together with benzylamine forms a homogeneous secondaryprimary pair.

The leaving groups or nucleofuges chosen are bromine, classically considered as a "good" leaving group <sup>16</sup> and phenoxy and *p*-nitrophenoxy groups, a homogeneous pair of nucleofuges possessing a different leaving group ability in connection with a different intrinsic basicity. The two oxygenated groups are traditionally considered <sup>17</sup> "poor" leaving groups in S<sub>N</sub>Ar reactions and, therefore, in the reactions of such substrates with neutral nucleophiles, especially with amines of low basicity, it is likely that base catalysis would be observed.<sup>6</sup>

The solvents used are methanol and benzene. The first one is a polar, protic, ionizing solvent, able to favour the decomposition of the zwitterionic intermediate. It has been chosen, indeed, to exclude any possible incidence of eventual catalytic phenomena and to confine the mechanistic observations to the first part of the reaction pathway, that is, where the first transition state is formed.<sup>4</sup>

In contrast, benzene is an aprotic, apolar and scarcely polarizable solvent, which represents an "ideal" medium to promote the "need" for base catalysis for the intermediate decomposition.<sup>6,15,17,18</sup> In this paper we will deal with the reactions of compounds 1–3 (L = Br,  $OC_6H_5$  and  $OC_6H_4NO_2$ -*p*) with amines in methanol and we will show that it is possible to obtain sets of substituent constants for *ortho*-like substituents which account well for the behaviour of the various series of substituted compounds, as a function of the nucleofuge.

In the following paper, we report on the results of an analogous study applied to the substrates with bromine as leaving group, in benzene solvent. By applying the same procedure as for the reactions in methanol, it will be shown that also in benzene there is the possibility of obtaining linear free energy *ortho*-correlations. *Inter alia*, the method used allows one to estimate  $k_1$  values for the apparently base-catalysed systems.

# **Results and discussion**

#### Reactions of 2-bromo-3-X-5-nitrothiophenes with primary and secondary amines in methanol

Rate constants and activation parameters for the title reactions are reported in Table 1. All the reactions proved to be first order both in substrate and in nucleophile; therefore, they follow the universally accepted attachment-detachment mechanism<sup>1</sup> with the overall reaction rate determined by the rate of formation of the reaction intermediate  $(k_A = k_1)$ .

When the logarithms of relative kinetic constants [log  $(k_X/k_H)$ ] for the reactions of 2-bromo-3-X-5-nitrothiophenes with a given amine are plotted against  $\sigma_p^-$  substituent constants<sup>19</sup> (Table 2) statistically significant linear *ortho*-correlations are obtained (Table 3, columns 2–5), provided that the data relative to X = SO<sub>2</sub>Me are excluded from the calculations. In fact, it is well known that the  $\sigma_p^-$  constant for the methylsulfonyl substituent does not describe adequately the behaviour of this substituent in the thiophene series.<sup>20</sup>

The confidence level of each single correlation is more than acceptable,<sup>21</sup> bearing in mind that the  $\sigma_p^-$  constants used, obtained for *para*-like substituents<sup>19</sup> could be rather inadequate to describe correctly the behaviour of *ortho*-like substituents. In order to improve the correlations and to obtain a set of  $\sigma$  constants more "adherent" to the heteroaromatic system considered, we have utilized Brown's method, that is, the so-called "Extended Selectivity Treatment (EST)".<sup>22</sup>

Thus, by plotting the log  $(k_{\rm X}/k_{\rm H})$  values for a given X substituent and for the six reactions studied against the  $\rho$  values of "first approximation", calculated as above, and by including in the correlations the point (0, 0), one obtains the "secondary"

 $(\sigma_{\mathbf{X},\mathbf{Br}})_{\mathbf{M}}$  values reported in Table 2, second line. In order to obtain a range of sigma values "homogeneous" with that of the  $\sigma_p^-$  substituent constant, these  $(\sigma_{\mathbf{X},\mathbf{Br}})_{\mathbf{M}}$  parameters have been "anchored" to  $\sigma_{\mathbf{NO}_2}^- = 1.23$ , as derived from the acidity constant of *p*-nitroanilinium ion<sup>19</sup> and the resulting parameters have been reported in Table 2 as  $(\sigma_{o,T})_{\mathbf{Br}}$ .

The correlations of log  $(k_{\rm x}/k_{\rm H})$  values with  $(\sigma_{o,\rm T})_{\rm Br}$  constants for each amine nucleophile afford the new values  $\rho$  reported in Table 3, column 6, and this time the quality of correlations is more than satisfactory. This is not a trivial result in that the necessary condition to obtain good cross-correlations of this kind is that the proximity effects of the various substituents do not change significantly with changing nucleophile and, inversely, the success of such correlations represents important evidence that this is, at least as a first approximation, the case.

Among the amines studied *N*-benzylmethylamine is the one which in theory should show the greatest difficulty in forming the bond with the C-2 carbon atom, *i.e.*, the reaction centre, and indeed the worst correlation pertains to this amine (Table 3).

A comparison of  $(\sigma_{a,T})_{Br}$  constants, obtained by the simultaneous use of the data relative to the six reactions series with the corresponding thiophene substituent constants optimized for *para*-like substituents  $[(\sigma_{p,T})_{Br}]_{Br}$  Table 2]<sup>23</sup> allows one to claim that for all the substituents studied, except for X = Br, the proximity effects of steric nature are of little relevance with respect to the electronic ones.

This result is quite surprising, if one considers the behaviour of analogous benzene systems,<sup>4</sup> and depends on the favourable geometry<sup>24</sup> of the thiophene ring which allows an extremely good arrangement of substituents by which the steric effects are minimized.

The "ortho" substituent which displays the greatest difference  $(\sigma_{\rho,T} - \sigma_{o,T})$  is, as expected, bromine which is unfavoured by its steric encumbrance and altogether by its incapacity to form the hydrogen bonding of the "built-in" solvation.<sup>14</sup> On account of this latter factor, the ortho-substituent CN also turns out rather disadvantaged.

#### Reaction of 2-phenoxy- and 2-*p*-nitrophenoxy-3-X-5-nitrothiophenes with primary and secondary amines in methanol

Rate constants and activation parameters for the title reactions are reported, respectively in Tables 4 and 5. All the reactions are second order overall, *i.e.*, first order in substrate and first order in nucleophile.

When the logarithms of relative kinetic constants [log  $(k_X/k_H)$ ] for the reactions of either 2-phenoxy-3-X-5-nitrothiophenes or 2-*p*-nitrophenoxy-3-X-5-nitrothiophenes with a given amine are plotted against  $\sigma_p^-$  substituent constants (Table 2) statistically significant linear *ortho*-correlations are obtained (Tables 6 and 7, columns 2–5) provided that the data relative to X = SO<sub>2</sub>Me are excluded from the calculations (*cf.* above for L = Br).

The confidence level of each single correlation is good;<sup>21</sup> however, it is possible to better the correlations by the method used above for the reactions involving bromine as leaving group.

Thus, by plotting the [log  $(k_{\rm X}/k_{\rm H})$ ] values for a given X substituent and for the six or five reactions studied against the "first approximation"  $\rho$  values and by including in the correlations the point (0, 0) one obtains the "secondary"  $(\sigma_{{\rm X},{\rm OC}_e{\rm H}_s})_{\rm M}$  and  $(\sigma_{{\rm X},{\rm OC}_e{\rm H}_s}{\rm NO}_{2^{-p}})_{\rm M}$  values reported in Table 2, lines 5 and 6. The substituent constants obtained by anchoring  $(\sigma_{{\rm X},{\rm OC}_e{\rm H}_s})_{\rm M}$  and  $(\sigma_{{\rm X},{\rm OC}_e{\rm H}_s}{\rm NO}_{2^{-p}})_{\rm M}$  to  $\sigma_{{\rm NO}_2}^- = 1.23$  are reported in Table 2 under  $(\sigma_{o,{\rm T}})_{{\rm OC}_e{\rm H}_s}$  and  $(\sigma_{o,{\rm T}})_{{\rm OC}_e{\rm H}_s}{\rm NO}_{2^{-p}}$ , respectively.

The correlations of log  $(k_{\rm X}/k_{\rm H})$  for the two leaving groups with  $(\sigma_{o,\rm T})_{\rm OC_6H_3}$  and  $(\sigma_{o,\rm T})_{\rm OC_6H_4NO_2-p}$ , respectively, give the new  $\rho$  values reported in Tables 6 and 7, columns 6–9.

Also in these cases, the success of correlations represents important evidence that the proximity effects do not change significantly with changing nucleophile.

 
 Table 1
 Logarithmic kinetic constants and activation parameters<sup>a</sup> for the reaction of 2-bromo-3-X-5-nitrothiophenes 1 with primary and secondary amines in methanol

| Х                  | PYRH                       | PIPH      | MORH      | BMAH      | BuAH      | BzAH      |
|--------------------|----------------------------|-----------|-----------|-----------|-----------|-----------|
| Me                 | -4.9843                    | -5.3671   | -6.0307   | -6.2284   | -6.9965   | -7.3496   |
|                    | 14.4; -32                  | 13.6; -36 | 14.6; -36 | 13.9; -39 | 16.3; -35 | 17.9; -31 |
| Н                  | -4.5881                    | -4.7925   | -5.3583   | -5.5055   | -6.4411   | -6.7065   |
|                    | 14.8; -29                  | 15.3; -28 | 15.3; -31 | 14.8; -33 | 15.0; -37 | 16.1; -34 |
| Br                 | -3.7309                    | -4.1126   | -4.7620   | -5.1207   | -5.6271   | -5.9603   |
|                    | 12.1; -34                  | 13.5; -31 | 14.0; -32 | 12.9; -38 | 15.1; -33 | 16.4; -30 |
| CONH <sub>2</sub>  | -2.1550                    | -2.5555   | -3.1850   | -3.2579   | -3.9024   | -4.2019   |
| -                  | 11.9; -28                  | 12.4; -28 | 13.7; -26 | 11.1; -36 | 13.2; -31 | 13.4; -32 |
| CO <sub>2</sub> Me | -1.6940                    | -2.0350   | -2.6049   | -3.1552   | -3.5086   | -3.7692   |
| -                  | 10.4; -31                  | 12.1; -27 | 11.2; -32 | 11.2; -35 | 12.3; -32 | 12.1; -34 |
| COMe               | -1.1780                    | -1.4445   | ·         | <i>,</i>  | -2.9244   | -3.2670   |
|                    | 11.0; -26                  | 10.8; -28 |           |           | 11.3; -33 | 13.2; -28 |
| SO <sub>2</sub> Me | -1.0589                    | -1.3665   | -2.0341   | -2.2803   | -2.7549   | -3.1148   |
| -                  | 10.5; -27                  | 11.4; -26 | 11.4; -29 | 10.2; -34 | 13.0; -27 | 13.3; -27 |
| CN                 | -1.2961                    | -1.3900   | -2.1462   | -2.3704   | -3.1026   | -3.4160   |
|                    | 10.9; -27                  | 10.4; -29 | 11.6; -29 | 10.3; -34 | 12.9; -29 | 14.1; -26 |
| NO <sub>2</sub>    | 0.6345 <sup><i>b</i></sup> | 0.2979    | -0.3036   | -0.5203   | -1.2721   | -1.5229   |
| 2                  |                            | 10.7; -21 | 8.5; -31  | 9.2; -30  | 11.4; -25 | 10.9; -28 |
|                    |                            |           |           |           |           | -         |

<sup>*a*</sup> For each couple X-amine the number on the first line represents log k calculated at 20 °C from activation parameters; the numbers on the second line are, respectively,  $\Delta H^{\neq}/\text{kcal mol}^{-1}$  at 20 °C, and  $\Delta S^{\neq}/\text{cal mol}^{-1}$  K<sup>-1</sup> at 20 °C. The kinetic constants,  $k/l \mod^{-1} \text{s}^{-1}$ , measured in the range 0–40 °C, were reproducible to within ± 3%; the maximum error of  $\Delta H^{\neq}$  is ± 0.5 kcal mol<sup>-1</sup>; the maximum error of  $\Delta S^{\neq}$  is ± 2 cal mol<sup>-1</sup> K<sup>-1</sup>. <sup>*b*</sup> Value directly measured at 20 °C.

#### Table 2 Substituent constants

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Me                      | Н                                                                                                    | Br                           | CONH <sub>2</sub>                                            | CO <sub>2</sub> Me                                           | COMe                                                         | SO <sub>2</sub> Me                                                                       | CN                                                                                  | NO <sub>2</sub>                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|
| $ \begin{array}{c} \sigma_{\rho}^{-a} \\ (\sigma_{\mathbf{X},\mathbf{Br}})_{\mathbf{M}} \\ (\sigma_{o,\mathrm{T}})_{\mathbf{Br}} \\ (\sigma_{\rho,\mathrm{T}})_{\mathbf{Br}} \\ (\sigma_{\mathbf{X},\mathbf{OC},\mathrm{H}_{2}})_{\mathbf{M}} \\ (\sigma_{\mathbf{X},\mathbf{OC},\mathrm{H}_{3}})_{\mathbf{M}} \\ (\sigma_{\sigma,\mathrm{T}})_{\mathbf{OC}_{4}\mathrm{H}_{3}} \\ (\sigma_{\sigma,\mathrm{T}})_{\mathbf{OC}_{4}\mathrm{H}_{3}\mathrm{NO}_{2}\cdot\rho} \end{array} $ | -0.10<br>-0.15<br>-0.15 | $\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$ | 0.30<br>0.17<br>0.17<br>0.35 | 0.62<br>0.58<br>0.57<br>0.51<br>0.48<br>0.61<br>0.44<br>0.57 | 0.74<br>0.69<br>0.68<br>0.65<br>0.68<br>0.76<br>0.62<br>0.71 | 0.82<br>0.84<br>0.82<br>0.80<br>0.71<br>0.81<br>0.65<br>0.76 | $ \begin{array}{c} 1.05\\ 0.86\\ 0.84\\ 0.83\\ 0.76\\ 0.76\\ 0.70\\ 0.71\\ \end{array} $ | $\begin{array}{c} 0.99\\ 0.81\\ 0.79\\ 0.87\\ 0.76\\ 0.84\\ 0.70\\ 0.79\end{array}$ | 1.23<br>1.26<br>1.23<br>1.23<br>1.34<br>1.31<br>1.23<br>1.23 |
| <sup><i>a</i></sup> Ref. 21.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                                                                                                      |                              |                                                              |                                                              |                                                              |                                                                                          |                                                                                     |                                                              |

Table 3 Susceptibility constants and other statistical data<sup>*a*</sup> for the reactions of 2-bromo-3-X-5-nitrothiophenes 1 with amines in methanol

| Amine | $ ho^{b}$ | i     | r     | n | $\rho^{c}$ | i     | r     | $n^{d}$ |
|-------|-----------|-------|-------|---|------------|-------|-------|---------|
| PYRH  | 4.03      | -0.10 | 0.989 | 8 | 4.09       | 0.12  | 0.999 | 9       |
| PIPH  | 4.07      | -0.22 | 0.991 | 8 | 4.12       | 0.00  | 0.999 | 9       |
| MORH  | 4.01      | -0.29 | 0.990 | 7 | 4.11       | -0.07 | 0.999 | 8       |
| BMAH  | 3.96      | -0.37 | 0.983 | 7 | 4.08       | -0.15 | 0.997 | 8       |
| BuAH  | 4.12      | -0.15 | 0.990 | 8 | 4.21       | 0.07  | 0.999 | 9       |
| BzAH  | 4.14      | -0.20 | 0.988 | 8 | 4.22       | 0.02  | 0.999 | 9       |
| <br>1 |           | 1.1.1 | 1     |   |            | ·     |       |         |

<sup>*a*</sup>  $\rho$ , reaction constant; *i*, intercept of the regression line with the ordinate ( $\sigma = 0$ ); *r*, correlation coefficient; *n*, number of data points. <sup>*b*</sup> Values obtained by using  $\sigma_p^-$  constants (Table 2). <sup>*c*</sup> Values obtained by using ( $\sigma_{o,T}$ )<sub>Br</sub> constants (Table 2). <sup>*d*</sup> Data for X = SO<sub>2</sub>CH<sub>3</sub> included throughout.

# Conclusions

When the X substituent is the same, the reactivity order observed is invariably PYRH > PIPH > MORH > BMAH > BuAH > BzAH. The greater nucleophilicity of secondary with respect to primary amines can be attributed to the favourable interactions ion–induced dipole in the reaction intermediate, between the positively charged 'ammonium' nitrogen and the polarizable alkyl chains bonded to it and for each of the two classes of amines reflects, at least partially, the differences in basicity.<sup>25</sup>

It is worth noting the inversion in reactivity with respect to the basicity order, in the pair morpholine–*N*-methylbenzylamine. As a matter of fact in the formation of the aromatic carbon atom–nucleophilic nitrogen bond, BMAH is sterically more hindered than MORH, and although more basic,<sup>25</sup> turns out less reactive. The close resemblance of the "optimized" sigma constants for the substituents  $CO_2Me$ , COMe,  $SO_2Me$  and CN arises from the fact that the reactivity sequence for these substituents, as determined by the nucleophile, present some overlap.

In fact, each reactivity sequence comes out from the different proximity interactions which occur in the reaction area as a function of the position of the rate determining transition state along the reaction coordinate.

For example, in the reactions of phenoxy derivatives (Y = H) with pyrrolidine and piperidine, which are likely to imply early transition states<sup>10</sup> and where the prevailing extraconjugative relationship occurs between the reaction centre and the nitro group at C-5,<sup>10</sup> the two substituents  $CO_2Me$  and COMe behave as if they possessed only inductive effects and thus turn out practically "equivalent" as regards the electronic effects.

 Table 4
 Logarithmic kinetic constants and activation parameters<sup>a</sup> for the reaction of 2-phenoxy-3-X-5-nitrothiophenes 2 with primary and secondary amines in methanol

| Х                  | PYRH                   | PIPH                   | MORH                   | BMAH                   | BuAH                   | BzAH                   |
|--------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Н                  | -3.5855<br>13.3; -30   | -3.7083<br>13.1; -31   | -4.2737<br>13.1; -33   | -4.4428<br>12.1; -38   | -5.3946<br>13.9; $-36$ | -5.6707<br>13.9; $-37$ |
| CONH <sub>2</sub>  | -2.1231<br>12.2; $-27$ | -2.3573<br>11.7; -29   | -2.7826<br>11.1; $-33$ | -2.9907<br>12.1; $-31$ | -3.6354<br>13.1; -30   | -3.9651<br>13.2; -32   |
| CO <sub>2</sub> Me | -1.3777<br>11.2; -26   | -1.6364<br>10.4; -30   | -2.2306<br>10.4; $-33$ | -2.3788<br>10.7; -33   | -3.0259<br>12.9; -28   | -3.2146<br>12.7; -30   |
| COMe               | -1.5046<br>11.3; -27   | -1.7119<br>11.1; $-28$ | -2.0353<br>10.4; $-32$ | -2.0520<br>10.5; $-32$ | -2.8478<br>12.7; $-28$ | -3.1090<br>12.0; -32   |
| SO <sub>2</sub> Me | -1.1807<br>9.7; $-31$  | -1.6665<br>8.4; -37    | -2.1503<br>9.7; $-35$  | -2.2109<br>9.9; $-35$  | -2.4982<br>12.9; $-26$ | -2.8569<br>12.2; -30   |
| CN                 | -1.0604<br>11.2; -25   | -1.2183<br>9.2; -33    | -1.1915<br>9.6; -34    | -2.1547<br>10.1; $-34$ | -2.7592<br>12.4; -29   | -2.9802<br>12.0; -31   |
| NO <sub>2</sub>    | 0.6313<br>8.2; -28     | 0.2612<br>10.6; -21    | 0.0817<br>9.9; -24     | -0.0345<br>9.9; -25    | -0.8028<br>11.4; -23   | -1.0317<br>11.4; -24   |

<sup>*a*</sup> For each couple X-amine the number on the first line represents log k calculated at 20 °C from activation parameters; the numbers on the second line are, respectively,  $\Delta H^*/k$ cal mol<sup>-1</sup> at 20 °C, and  $\Delta S^*/c$ al mol<sup>-1</sup> K<sup>-1</sup> at 20 °C. The kinetic constants, k/l mol<sup>-1</sup> s<sup>-1</sup>, measured in the range 0–40 °C were reproducible to within ± 3 %; the maximum error of  $\Delta H^*$  is ± 0.5 kcal mol<sup>-1</sup>; the maximum error of  $\Delta S^*$  is ± 2 cal mol<sup>-1</sup> K<sup>-1</sup>.

 Table 5
 Logarithmic kinetic constants and activation parameters<sup>a</sup> for the reaction of 2-p-nitrophenoxy-3-X-5-nitrothiophenes 3 with primary and secondary amines in methanol

| Х                  | PIPH                  | MORH                   | BMAH                  | BuAH                   | BzAH                 |
|--------------------|-----------------------|------------------------|-----------------------|------------------------|----------------------|
| Н                  | -3.3822<br>12.9; -30  | -4.0439<br>12.6: $-34$ | -4.3741<br>11.3: -40  | -5.1248<br>14.0: -34   | -5.2701<br>13.9: -35 |
| CONH <sub>2</sub>  | -1.3773<br>9.7; $-32$ | -1.9038<br>11.4; -28   | -2.0157<br>9.4; $-36$ | -2.9201<br>12.2; $-30$ | -3.2410<br>13.5; -27 |
| CO <sub>2</sub> Me | -0.7711<br>7.5; -37   | -1.4453<br>10.8; -28   | -1.5858<br>6.7; -43   | -2.3000<br>12.0; $-28$ | -2.5428<br>15.5; -17 |
| COMe               | -0.5866<br>8.7; $-32$ | -1.2484<br>10.1; -30   | -1.3889<br>7.7; -39   | -2.1768<br>11.7; $-28$ | -2.4113<br>14.1; -21 |
| SO <sub>2</sub> Me | -0.8396<br>5.4; -44   | -1.6812<br>10.2; -31   | -1.8059<br>7.0; -43   | -2.0077<br>12.0; $-27$ | -2.2207<br>11.2; -31 |
| CN                 | -0.2916<br>9.5; $-27$ | -1.0972<br>9.4; -31    | -1.2299<br>8.3; $-36$ | -2.2432<br>15.7; -15   | -2.4717<br>14.1; -22 |
| NO <sub>2</sub>    | 1.1926<br>8.9; -23    | 0.6078<br>9.3; -24     | 0.5142<br>6.4; -34    | -0.6676<br>13.6; -15   | -0.8150<br>13.2; -17 |

<sup>*a*</sup> For each couple X-amine the number on the first line represents log k calculated at 20 °C from activation parameters; the numbers on the second line are, respectively,  $\Delta H^*/kcal \mod^{-1} at 20$  °C, and  $\Delta S^*/cal \mod^{-1} K^{-1}$  at 20 °C. The kinetic constants,  $k/l \mod^{-1} s^{-1}$ , measured in the range 0–40 °C were reproducible to within ± 3 %; the maximum error of  $\Delta H^*$  is ± 0.5 kcal mol<sup>-1</sup>; the maximum error of  $\Delta S^*$  is ± 2 cal mol<sup>-1</sup> K<sup>-1</sup>.

| Amine                        | $ ho^{b}$                    | i                                | r                                | n                | $\rho^{c}$                   | i                                           | r                                | <i>n</i> <sup>d</sup> |
|------------------------------|------------------------------|----------------------------------|----------------------------------|------------------|------------------------------|---------------------------------------------|----------------------------------|-----------------------|
| PYRH<br>PIPH<br>MORH<br>BMAH | 3.18<br>3.04<br>3.22<br>3.25 | -0.25<br>-0.25<br>-0.28<br>-0.29 | 0.964<br>0.970<br>0.953<br>0.947 | 6<br>6<br>6<br>6 | 3.44<br>3.24<br>3.51<br>3.56 | -0.01<br>0.02<br>-0.09<br>-0.09             | 0.998<br>0.993<br>0.996<br>0.995 | 7<br>7<br>7<br>7      |
| BuAH<br>BzAH                 | 3.44<br>3.49                 | $-0.21 \\ -0.22$                 | 0.967<br>0.967                   | 6<br>6           | 3.74<br>3.79                 | $\begin{array}{c} 0.08 \\ 0.06 \end{array}$ | 0.997<br>0.999                   | 7<br>7                |

 Table 6
 Susceptibility constants and other statistical data<sup>a</sup> for the reactions of 2-phenoxy-3-X-5-nitrothiophenes 2 with amines in methanol

<sup>*a*</sup>  $\rho$ , reaction constant; *i*, intercept of the regression line with the ordinate ( $\sigma = 0$ ); *r*, correlation coefficient; *n*, number of data points. <sup>*b*</sup> Values obtained by using  $\sigma_p^-$  constants (Table 2). <sup>*c*</sup> Values obtained by using ( $\sigma_{o,T}$ )<sub>OC<sub>6</sub>H<sub>5</sub></sub> constants (Table 2). <sup>*d*</sup> Data for X = SO<sub>2</sub>CH<sub>3</sub> included throughout.

| Table 7 | Susceptibility constants and | d other statistical data | <sup>a</sup> for the reactions of | f 2-p-nitrophenox | xy-3-X-5-nitroth | iophenes 3 | with amines in me | ethanol |
|---------|------------------------------|--------------------------|-----------------------------------|-------------------|------------------|------------|-------------------|---------|
|---------|------------------------------|--------------------------|-----------------------------------|-------------------|------------------|------------|-------------------|---------|

| Ar | nine $\rho^b$ | i     | r     | п | $\rho^{c}$ | i     | r     | n <sup>d</sup> |  |
|----|---------------|-------|-------|---|------------|-------|-------|----------------|--|
| PI | PH 3.56       | -0.10 | 0.990 | 6 | 3.75       | -0.04 | 0.998 | 7              |  |
| M  | ORH 3.51      | -0.04 | 0.988 | 6 | 3.76       | -0.06 | 0.997 | 7              |  |
| BN | AAH 3.73      | -0.04 | 0.984 | 6 | 3.95       | -0.01 | 0.997 | 7              |  |
| Bu | AH 3.42       | -0.04 | 0.980 | 6 | 3.65       | 0.14  | 0.989 | 7              |  |
| Bz | AH 3.41       | -0.02 | 0.978 | 6 | 3.65       | 0.07  | 0.990 | 7              |  |

<sup>*a*</sup>  $\rho$ , reaction constant; *i*, intercept of the regression line with the ordinate ( $\sigma = 0$ ); *r*, correlation coefficient; *n*, number of data points. <sup>*b*</sup> Values obtained by using  $\sigma_{\rho}^{-}$  constants (Table 2). <sup>*c*</sup> Values obtained by using ( $\sigma_{o,T}$ )<sub>OC<sub>s</sub>H<sub>4</sub>NO<sub>2</sub>, *p* constants (Table 2). <sup>*d*</sup> Data for X = SO<sub>2</sub>CH<sub>3</sub> included throughout.</sub>

Moreover, since COMe is slightly disfavoured from a steric point of view, the sequence  $CO_2Me > COMe (k_{CO_2Me}/k_{COMe} 1.2-1.3)$  is observed.

As the nucleophilicity of the amine decreases, the transition state becomes later and later,<sup>26</sup> the "competition" of the 3-X substituent with the 5-nitro group acquires some relevance

|                  | S(DMSO J 200 MIL-)                                                                                                                                                                                                                          | UDMC                                    | Calculated/fou | nd          |             |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|-------------|-------------|
|                  | ∂(DMSO-d <sub>6</sub> , 300 MHZ)                                                                                                                                                                                                            | Calculated/found                        | % C            | % H         | % N         |
| 2f               | 8.23 (H-4); 7.65–7.47 (Ar–H) <sup>b</sup> ; 2.59 (COCH <sub>3</sub> )                                                                                                                                                                       | 263.025357/263.025230                   | 57.74/57.60    | 3.44/3.60   | 5.32/5.25   |
| 2g               | 8.15 (H-4); 7.66–3.48 (CH <sub>2</sub> O) <sup>b</sup> ; 3.44 (SO <sub>2</sub> CH <sub>3</sub> )                                                                                                                                            | 298.992744/298.992216                   | 44.14/44.30    | 3.03/3.20   | 4.68/4.55   |
| 2h               | 8.62 (H-4); 7.65–7.48 (Ar–H) <sup>b</sup>                                                                                                                                                                                                   | 246.010229/246.009914                   | 53.65/53.40    | 2.46/2.30   | 11.38/11.50 |
| 6a               | 7.90 (H-4); 3.76–3.72 (CH <sub>2</sub> O) <sup><i>b</i></sup> ; 3.23–3.21 (CH <sub>2</sub> N) <sup><i>b</i></sup> ; 2.14                                                                                                                    | 228.056977/228.056864                   | 47.36/47.50    | 5.30/5.20   | 12.27/12.50 |
| 6b               | (CH <sub>3</sub> )<br>7.93 (H-4) <sup><i>a</i></sup> ; 6.37 (H-3) <sup><i>a</i></sup> ; 3.75–3.70 (CH <sub>2</sub> O) <sup><i>b</i></sup> ; 3.46–3.40<br>(CH,N) <sup><i>b</i></sup>                                                         | 214.041411/214.041214                   | 44.85/45.00    | 4.70/4.80   | 13.08/12.90 |
| 6c               | $(CH_2, V)$<br>7.95 (H-4); 3.75–3.71 (CH <sub>2</sub> O) <sup>b</sup> ; 3.48–3.40 (CH <sub>2</sub> N) <sup>b</sup>                                                                                                                          | 291.951725/291.951695                   | 32.78/32.90    | 3.09/3.15   | 9.56/9.45   |
| 6d               | 8.14 (H-4); 7.87 (NH <sub>2</sub> ); 7.42 (NH <sub>2</sub> ); 3.75–3.71 (CH <sub>2</sub> O) <sup><i>b</i></sup> ;                                                                                                                           | 257.047275/257.047028                   | 42.02/42.20    | 4.31/4.50   | 16.33/16.20 |
| 6e               | $3.42-3.38 (CH_2N)^b$<br>8.11 (H-4); 3.78–3.31 (CH <sub>2</sub> O, CO <sub>2</sub> CH <sub>3</sub> ) <sup>b</sup> ; 3.49–3.44 (CH <sub>2</sub> N) <sup>b</sup>                                                                              | 272.046838/272.046693                   | 44.11/44.00    | 4.44/4.20   | 10.29/10.30 |
| 6g               | (SO CH)<br>(SO CH)                                                                                                                                                                                                                          | 292.018899/292.018765                   | 36.98/37.10    | 4.14/4.20   | 9.58/9.70   |
| 6h               | $(30_2 \text{ CH}_3)$<br>8 37 (H-4): 3 78–3 75 (CH O) <sup>b</sup> : 3 73–3 68 (CH N) <sup>b</sup>                                                                                                                                          | 239 036615/239 036463                   | 45 18/45 30    | 3 79/4 00   | 17 56/17 40 |
| 6i               | $8 38 (H-4): 3 80-3 78 (CH O)^{b}: 3 55-3 50 (CH N)^{b}$                                                                                                                                                                                    | 259.030013/259.030403                   | 37 07/37 20    | 3 50/3 40   | 16 21/16 40 |
| 7a               | $7.90 (H-4); 7.40-7.27 (Ar-H)^{b}; 4.76 (CH2); 3.16 (N-CH3);$                                                                                                                                                                               | 262.077600/262.078200                   | 59.52/59.65    | 5.38/5.30   | 10.68/10.45 |
|                  | 2.18 (CH <sub>3</sub> )                                                                                                                                                                                                                     |                                         |                |             |             |
| 7b               | 7.90 (H-4)"; 7.38–7.27 (Ar–H)"; 6.28 (H-3)"; 4.74 (CH <sub>2</sub> );<br>3.19 (CH.)                                                                                                                                                         | 248.061950/248.062161                   | 58.05/58.20    | 4.87/5.00   | 11.28/11.20 |
| 76               | 7 92 (H-4): 7 42–7 28 (Ar–H) <sup>b</sup> · 4 75 (CH.): 3 13 (CH.)                                                                                                                                                                          | 325 972461/325 972885                   | 44 05/44 25    | 3 39/3 45   | 8 56/8 45   |
| 7d               | 8.04 (H-4); 7.93 (NH <sub>2</sub> ); 7.42–7.25 (Ar–H, NH <sub>2</sub> ) <sup><i>b</i></sup> ; 4.79                                                                                                                                          | 291.067763/257.067893                   | 53.60/53.50    | 4.50/4.60   | 14.42/14.60 |
| _                | (CH <sub>2</sub> ); 3.13 (CH <sub>3</sub> )                                                                                                                                                                                                 |                                         |                |             |             |
| 7e               | 8.07 (H-4); 7.38–7.24 (Ar–H) <sup><i>o</i></sup> ; 4.83 (CH <sub>2</sub> ); 3.72 (CO.CH <sub>2</sub> ): 3.15 (CH <sub>2</sub> )                                                                                                             | 306.067429/306.067742                   | 54.89/54.80    | 4.61/4.60   | 9.14/9.10   |
| 7f               | 8.40 (H-4); 7.37–7.20 (Ar–H) <sup><i>b</i></sup> ; 4.78 (CH <sub>2</sub> ); 3.11 (CH <sub>3</sub> );                                                                                                                                        | 290.072514/290.072688                   | 57.92/58.00    | 4.86/4.80   | 9.65/9.70   |
| 7g               | 8.15 (H-4); 7.40–7.29 (Ar–H) <sup><math>b</math></sup> ; 4.92 (CH <sub>2</sub> ); 3.40 (SO <sub>2</sub> CH <sub>3</sub> );<br>3.28 (CH <sub>2</sub> )                                                                                       | 326.039501/326.039865                   | 47.84/48.00    | 4.32/4.40   | 8.58/8.50   |
| 7h               | 8.36 (H-4); 7.42–7.30 (Ar–H) <sup>b</sup> ; 4.95 (CH <sub>2</sub> ); 3.40 (CH <sub>2</sub> )                                                                                                                                                | 273.057199/273.057334                   | 57.13/57.40    | 4.06/4.00   | 15.37/15.30 |
| 8a               | 8.75 (NH); 7.75 (H-4); 3.20–3.10 (CH <sub>2</sub> -1) <sup>b</sup> ; 2.31 (CH <sub>3</sub> );                                                                                                                                               | 214.077600/214.077320                   | 50.45/50.60    | 6.59/6.50   | 13.07/13.15 |
|                  | 1.68–1.62 (CH <sub>2</sub> -2) <sup>b</sup> ; 1.40–1.30 (CH <sub>2</sub> -3) <sup>b</sup> ; 0.90 (CH <sub>3</sub> )                                                                                                                         |                                         |                |             |             |
| 8b               | 8.80 (NH); 7.81 (H-4) <sup><i>a</i></sup> ; 6.07 (H-3) <sup><i>a</i></sup> ; 3.22–3.15 (CH <sub>2</sub> -1) <sup><i>b</i></sup> ;                                                                                                           | 200.061950/200.062068                   | 47.98/48.10    | 4.32/4.30   | 8.58/8.50   |
| 8c               | 1.00-1.50 (CH <sub>2</sub> -2), $1.40-1.50$ (CH <sub>2</sub> -5), $0.90$ (CH <sub>3</sub> )<br>8 70 (NH): 7 90 (H-4): 3 22–3 12 (CH <sub>2</sub> -1) <sup>b</sup> : 2 31 (CH <sub>2</sub> ):                                                | 277 972461/277 972642                   | 34 42/34 50    | 3 97/3 90   | 10.03/10.10 |
|                  | $1.70-1.60 (CH_2-2)^b; 1.42-1.36 (CH_2-3)^b; 0.90 (CH_3)$                                                                                                                                                                                   | 2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 01112/01100    | 010 11010 0 | 10102/10110 |
| 8f               | 8.50 (NH); 8.05 (H-4); 3.20–3.12 (CH <sub>2</sub> -1) <sup><i>b</i></sup> ; 2.45 (COCH <sub>3</sub> );<br>1.72 1.60 (CH <sub>2</sub> -2) <sup><i>b</i></sup> : 1.40 1.36 (CH <sub>2</sub> -3) <sup><i>b</i></sup> : 0.92 (CH <sub>2</sub> ) | 242.072514/242.072805                   | 49.57/49.69    | 5.82/5.95   | 11.56/12.10 |
| 8g               | 8.45 (NH); $8.02$ (H-4); $3.30-3.20$ (SO <sub>2</sub> CH <sub>3</sub> , CH <sub>2</sub> -1) <sup><i>b</i></sup> ; $1.66-$                                                                                                                   | 278.039501/278.039641                   | 38.84/38.90    | 5.07/5.00   | 10.06/10.10 |
| -                | 1.55 (CH <sub>2</sub> -2); 1.39–1.28 (CH <sub>2</sub> -3) <sup>b</sup> ; 0.90 (CH <sub>3</sub> )                                                                                                                                            |                                         |                |             |             |
| 8h               | 9.55 (NH); 8.30 (H-4); 3.31–3.23 (CH <sub>2</sub> -1) <sup><i>b</i></sup> ; 1.61–1.57 (CH <sub>2</sub> -2); 1.35, 1.28 (CH <sub>2</sub> -3) <sup><i>b</i></sup> : 0.89 (CH <sub>2</sub> )                                                   | 225.057199/225.057455                   | 47.99/48.10    | 4.92/5.00   | 18.65/18.50 |
| 9a               | $(CH_2-2)$ , $1.53-1.28$ (CH_2-5), $0.89$ (CH <sub>3</sub> )<br>9.18 (NH); 7.90 (H-4); 7.38-7.30 (Ar-H) <sup>b</sup> ; 4.48 (CH <sub>2</sub> );                                                                                             | 248.061950/248.062080                   | 58.05/58.25    | 4.87/5.05   | 11.28/11.20 |
|                  | 2.25 (CH <sub>3</sub> )                                                                                                                                                                                                                     |                                         |                |             |             |
| 9b               | 9.22 (NH); 7.84 (H-4)"; 7.42–7.38 (Ar-H); 6.13 (H-3)";<br>4 45 (CH <sub>2</sub> )                                                                                                                                                           | 234.046299/234.046379                   | 56.40/56.50    | 4.30/4.20   | 11.96/12.10 |
| 9c               | 9.43 (NH); 7.92 (H-4); 7.39–7.30 (Ar–H) <sup><math>b</math></sup> ; 4.46 (CH <sub>3</sub> )                                                                                                                                                 | 311.956811/311.956555                   | 42.18/42.45    | 2.90/2.95   | 8.94/8.90   |
| 9f               | 10.3 (NH); 8.40 (H-4); 7.38 (Ar-H); 4.60 (CH <sub>2</sub> ); 2.46                                                                                                                                                                           | 276.056864/276.057045                   | 56.51/56.40    | 4.38/4.50   | 10.14/10.20 |
| 0                | $(COCH_3)$                                                                                                                                                                                                                                  | 212 022051/221 022550                   | 16 14/46 50    | 2 97/5 (0   | 0.07/0.00   |
| Уg               | 9.95 (NH); 8.25 (H-4); 7.45–7.38 (Ar–H) $^{\circ}$ ; 4.60 (CH <sub>2</sub> );<br>3.42 (SO <sub>2</sub> CH <sub>2</sub> )                                                                                                                    | 312.023851/321.023678                   | 46.14/46.50    | 3.8//5.60   | 8.97/8.90   |
| 9h               | 10.1 (NH); 8.05 (H-4); 7.48–7.42 (Ar–H) <sup><math>b</math></sup> ; 4.65 (CH <sub>2</sub> )                                                                                                                                                 | 271.041548/271.041705                   | 57.55/57.50    | 3.34/3.30   | 15.49/15.30 |
| <sup>a</sup> Dou | ble peak. <sup>b</sup> Multiplet.                                                                                                                                                                                                           |                                         |                |             |             |
|                  |                                                                                                                                                                                                                                             |                                         |                |             |             |

and the COMe group thus becomes more efficient than  $CO_2Me (k_{CO_2Me}/k_{COMe} 0.6-0.8)$  in stabilizing the reaction intermediate.

The methylsulfonyl group normally shows a set of electronic effects <sup>10,19</sup> comparable with that of the acetyl group but at the same time displays a less favourable geometry for the formation of the hydrogen bonding of the built-in solvation and due to its bulk, comparatively greater than that of the other substituents, can exert a significant retarding primary steric effect.<sup>11,12</sup> Of course, this latter effect is as much lesser as is the transition state later along the reaction coordinate. Finally, the cyano group, whose geometry is not very favourable for the formation of the hydrogen bonding, will assume a more and more "feeble" importance in the reactivity sequence, as this factor becomes more and more decisive.

The  $\sigma$  constants calculated for the case L = OC<sub>6</sub>H<sub>5</sub> (Table 2, line 7) are smaller than the corresponding values for L =

 $OC_6H_4NO_2-p$  (Table 2, line 8). This fact is in accord with the observation that the phenoxy group, which is more electrondonating than the *p*-nitrophenoxy group, exerts a levelling effect on the electronic effects of the 3-X substituent, especially in the starting compound but also in the transition state.

# **Experimental**

### Synthesis and purification of compounds

Compounds **1a**–**e**,**g**–**i**,<sup>27</sup> **1f**,<sup>28</sup> **2b**,<sup>29</sup> **2d**,**e**,<sup>18d</sup> **2i**,<sup>30</sup> **3**,<sup>31</sup> **4a**–**i**,<sup>32</sup> **5a**–**e**,**g**–**i**,<sup>27</sup> **5f**,<sup>33</sup> **7i**,<sup>17b</sup> **8d**,**e**,<sup>18d</sup> **8i**,<sup>18b</sup> **9d**,**e**,<sup>18d</sup> **9i**<sup>17b</sup> were prepared and purified by the methods reported. Compounds **2f**, **2g** and **2h** were prepared by reacting the corresponding 2-bromo-3-X-5-nitrothiophenes with potassium phenoxide (**2f**, mp 99–100 °C from MeOH; **2g**, mp 104–105 °C from MeOH; **2h**, mp 99–100 °C from ligroin-benzene. All the new compounds gave

| Table 9 | Physical and | spectroscop | pic data f | or compou | 1nds <b>4–9</b> |
|---------|--------------|-------------|------------|-----------|-----------------|
|         | -            |             |            |           |                 |

|                      |                                                  |                                                 | MOR                                 |                                            | BMA                     |                                            | BuA              |                                                        | BzA              |                                                    |  |
|----------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------|--------------------------------------------|-------------------------|--------------------------------------------|------------------|--------------------------------------------------------|------------------|----------------------------------------------------|--|
| Am                   | PYR<br>$\lambda_{max}/nm^a$<br>log $\varepsilon$ | $PIP \\ \lambda_{max}/nm^a \\ \log \varepsilon$ | Mp/°C<br>Solvent                    | $\lambda_{\max}/nm^a$<br>log $\varepsilon$ | Mp/°C<br>Solvent        | $\lambda_{\max}/nm^a$<br>log $\varepsilon$ | Mp/°C<br>Solvent | $\lambda_{\max}/\operatorname{nm}^{a}\log \varepsilon$ | Mp/°C<br>Solvent | $\frac{\lambda_{\max}}{nm^a}$<br>log $\varepsilon$ |  |
| Me                   | 460 <sup><i>b</i></sup>                          | 440 <sup>c</sup>                                | 132–133                             | 414                                        | 186                     | 450                                        | 183–184          | 442                                                    | 144–145          | 449                                                |  |
|                      | 4.553                                            | 4.161                                           | Methanol                            | 4.065                                      | Methanol                | 4.310                                      | Methanol-water   | 4.452                                                  | Methanol         | 4.261                                              |  |
| Н                    | $460^{b}$                                        | 448 <sup>c</sup>                                | 169-170                             | 435                                        | 105-106                 | 437                                        | 75–77            | 438                                                    | 163-164          | 438                                                |  |
|                      | 4.555                                            | 4.500                                           | Methanol                            | 4.350                                      | Methanol                | 4.462                                      | Methanol         | 4.457                                                  | Methanol         | 4.463                                              |  |
| Br                   | 455 <sup>b</sup>                                 | 428 <sup>c</sup>                                | 110-111                             | 408                                        | Oil                     | 435                                        | 81-82            | 443                                                    | 151              | 440                                                |  |
|                      | 4.428                                            | 4.140                                           | Methanol                            | 4.073                                      |                         | 4.287                                      | Methanol         | 4.411                                                  | Ligroine         | 4.388                                              |  |
| CONH <sub>2</sub>    | 435 <sup>b</sup>                                 | 432 <sup>c</sup>                                | 187                                 | 417                                        | 142-143                 | 430                                        |                  | 426 <sup>f</sup>                                       | e                | 422 <sup>h</sup>                                   |  |
| -                    | 4.350                                            | 4.210                                           | Methanol                            | 4.139                                      | Toluene                 | 4.328                                      |                  | 4.375                                                  |                  | 4.361                                              |  |
| CO <sub>2</sub> Me   | 425 <sup><i>b</i></sup>                          | 420 <sup>c</sup>                                | 167                                 | 404                                        | 80-81                   | 416                                        |                  | 415 <sup>f</sup>                                       |                  | $410^{h}$                                          |  |
| -                    | 4.348                                            | 4.220                                           | Methanol                            | 4.156                                      | Methanol                | 4.271                                      |                  | 4.354                                                  |                  | 4.328                                              |  |
| COMe                 | 425 <sup><i>b</i></sup>                          | $420^{d}$                                       | 123                                 | 409                                        | 98–99                   | 420                                        | 78-80            | 415                                                    | 200-201          | 412                                                |  |
|                      | 4.34                                             | 4.199                                           | Methanol                            | 4.117                                      | Methanol                | 4.263                                      | Methanol         | 4.204                                                  | Methanol         | 4.332                                              |  |
| SO <sub>2</sub> Me   | 413 <sup>b</sup>                                 | 404 <sup>c</sup>                                | 153-154                             | 390                                        | 79-80                   | 404                                        | 113–114          | 404                                                    | 141-142          | 400                                                |  |
| -                    | 4.338                                            | 4.120                                           | Methanol                            | 4.046                                      | Ligroine                | 4.210                                      | Light petroleum  | 4.288                                                  | Methanol         | 4.297                                              |  |
| CN                   | 420 <sup><i>b</i></sup>                          | 418 <sup>c</sup>                                | 150-151                             | 408                                        | 109-110                 | 415                                        | 131–132          | 415                                                    | 130-132          | 410                                                |  |
|                      | 4.352                                            | 4.301                                           | Methanol                            | 4.241                                      | Methanol                | 4.326                                      | Methanol         | 4.331                                                  | Methanol         | 4.301                                              |  |
| NO <sub>2</sub>      | $420^{b}$                                        | 380 <sup>c</sup>                                | 107-108                             | 378                                        |                         | 403 <sup>e</sup>                           |                  | 415 <sup>g</sup>                                       |                  | 410 <sup><i>i</i></sup>                            |  |
| -                    | 4.215                                            | 4.199                                           | Light petroleum                     | 4.176                                      |                         | 4.190                                      |                  | 4.250                                                  |                  | 4.229                                              |  |
| <sup>a</sup> In ment | hol <sup>b</sup> Ref 32                          | <sup>c</sup> Ref 29 $d$                         | Ref 33 <sup>e</sup> Ref $17h^{f_1}$ | Ref 18d <sup>g</sup> Re                    | of 18h <sup>h</sup> Ref | 18 <i>d</i> <sup>i</sup> Ref 17            | b                |                                                        |                  |                                                    |  |

In menthol. <sup>*v*</sup> Ref. 32. <sup>*c*</sup> Ref. 29. <sup>*a*</sup> Ref. 33. <sup>*e*</sup> Ref. 17*b*. <sup>*j*</sup> Ref. 18*d*. <sup>*s*</sup> Ref. 18*b*. <sup>*n*</sup> Ref. 18*d*. <sup>*i*</sup> Ref. 17*b* 

correct analysis and NMR spectra, see data in Table 8). Compounds 1-3 gave the expected amino derivatives 4-9 on treatment with amines in methanol, in high yelds (> 95%) as indicated by TLC and UV-Vis (200-450 nm) spectral analysis of the mixtures obtained after complete reaction. The relevant physical data of unknown compounds 4–9 are shown in Table 9. All <sup>1</sup>H NMR spectra were recorded on a Varian Gemini 300 instrument in the Fourier transform mode at 21.0  $\pm$  0.5 °C in DMSO-d<sub>6</sub>. Mass spectra were recorded on a VG70 70E apparatus. All melting points were obtained with a Reichert Termovar apparatus.

#### Kinetic data

Optical density measurements were carried out, after dilution with acidified methanol, by using a Zeiss PMQ II UV-Vis spectrophotometer. The wavelength and  $\log \varepsilon$  values for UV spectral measurements are shown in Table 9. The concentrations used were from  $5.0 \times 10^{-5}$  to  $1.5 \times 10^{-5}$  M for substrates and from  $1.0 \times 10^{-3}$  to  $1.0 \times 10^{-1}$  M for the amines.

## References

- 1 J. F. Bunnett and R. E. Zahler, Chem. Rev., 1951, 49, 273; J. F. Bunnett, Quart. Rev. Chem. Soc., 1958, 12, 1.
- 2 J. Miller, Aromatic Nucleophilic Substitution, Elsevier, Amsterdam, 1968
- 3 C. F. Bernasconi, MTP Int. Rev. Sci.: Org. Chem. Ser. One, 1973, 3, 33
- 4 F. Terrier, Nucleophilic Aromatic Displacement. The Influence of the Nitro Group, VCH Publishers, Inc., New York, 1991
- 5 E. Buncel, J. M. Dust and F. Terrier, Chem. Rev., 1995, 95, 2261.
- 6 G. Consiglio, V. Frenna and D. Spinelli, "Base Catalysis in Aromatic Nucleophilic Substitutions: Current Views" in Topics in Heterocyclic Systems. Synthesis, Reactions and Properties, eds. D. Spinelli and O. Attanasi, 1996, vol. 1; C. Arnone, G. Consiglio, D. Spinelli and V. Frenna, J. Chem. Soc., Perkin Trans. 2, 1990, 2153.
- 7 P. Tomasik and C. D. Johnson, Adv. Heterocycl. Chem., 1976, 20, 1. 8 J. Chem. Soc., Perkin Trans. 2, 2002, following paper (DOI: 10.1039/ b111544h).
- 9 Handbook of Chemistry and Physics, 56th Edition, 1975-1976, CRF Press, Cleveland, Ohio; M. Charton, Prog. Phys. Org. Chem., 1971 8 235
- 10 D. Spinelli and G. Consiglio, J. Chem. Soc., Perkin Trans. 2, 1975, 989
- 11 D. Spinelli, G. Consiglio, C. Dell'Erba and M. Novi, The Chemistry of Heterocyclic Compounds, ed. S. Gronowitz, John Wiley and Sons, Inc., New York, 1991, vol. 44: Thiophene and its Derivatives, Part Four.
- J. Chem. Soc., Perkin Trans. 2, 2002, 965-970 970

- 12 D. Spinelli, G. Consiglio and T. Monti, J. Chem. Soc., Perkin Trans. 2, 1975, 816.
- 13 D. Spinelli, G. Consiglio, R. Noto and A. Corrao, J. Chem. Soc., Perkin Trans. 2, 1974, 1632; D. Spinelli and G. Consiglio, J. Chem. Soc., Perkin Trans. 2, 1975, 1388; C. Arnone, G. Consiglio, S. Gronowitz, B. Maltesson, A.-B. Hörnfeldt, R. Noto and D. Spinelli, Chem. Scr., 1978/79, 13, 130.
- 14 J. F. Bunnett and R. J. Morath, J. Am. Chem. Soc., 1955, 77, 5051.
- 15 G. Consiglio, C. Arnone, D. Spinelli and R. Noto, J. Chem. Soc., Perkin Trans. 2, 1982, 721.
- 16 D. Spinelli, G. Consiglio and R. Noto, J. Heterocycl. Chem., 1977, 14. 1325.
- 17 (a) D. Spinelli, G. Consiglio and R. Noto, J. Chem. Soc., Perkin Trans. 2, 1977, 1316; (b) G. Consiglio, V. Frenna, E. Mezzina, A. Pizzolato and D. Spinelli, J. Chem. Soc., Perkin Trans. 2, 1998, 325
- 18 (a) G. Consiglio, R. Noto and D. Spinelli, J. Chem. Soc., Perkin Trans. 2, 1979, 222; (b) G. Consiglio, C. Arnone, D. Spinelli, R. Noto and V. Frenna, J. Chem. Soc., Perkin Trans. 2, 1984, 781; (c) C. Arnone, G. Consiglio, V. Frenna, E. Mezzina and D. Spinelli, J. Chem. Res. (S), 1993, 440; C. Arnone, G. Consiglio, V. Frenna, E. Mezzina and D. Spinelli, J. Chem. Res. (M), 2949-2963; (d) V. Frenna, G. Consiglio, C. Arnone and D. Spinelli, Tetrahedron, 1995. 51. 5403
- 19 A. J. Hoefnagel and B. M. Wepster, J. Am. Chem. Soc., 1973, 95, 5357
- 20 D. Spinelli, G. Consiglio and A. Corrao, J. Chem. Soc., Perkin Trans. 2, 1972, 1866.
- 21 As shown by a t-test, the regression parameter,  $\sigma$ , is statistically significant at better than 0.1% level.
- 22 H. C. Brown and L. M. Stock, J. Am. Chem. Soc., 1962, 84, 3298.
- 23 G. Consiglio, V. Frenna, C. Arnone, E. Mezzina and D. Spinelli, J. Chem. Soc., Perkin Trans. 2, 1994, 2187.
- 24 A. Mugnoli, D. Spinelli, G. Consiglio and R. Noto, J. Heterocycl. Chem., 1988, 25, 177.
- 25 V. Frenna, N. Vivona, G. Consiglio and D. Spinelli, J. Chem. Soc., Perkin Trans. 2, 1985, 1865.
- 26 G. S. Hammond, J. Am. Chem. Soc., 1955, 77, 834.
- 27 D. Spinelli, G. Consiglio, R. Noto and A. Corrao, J. Chem. Soc., Perkin Trans. 2, 1975, 620.
- 28 R. Noto, V. Frenna, G. Consiglio and D. Spinelli, J. Chem. Res. (S), 1991, 270; R. Noto, V. Frenna, G. Consiglio and D. Spinelli, J. Chem. Res. (M), 2701-2709.
- 29 G. Guanti, C. Dell'Erba and P. Macera, J. Heterocycl. Chem., 1971, 8, 537.
- 30 C. D. Hurd and K. L. Kreuz, J. Am. Chem. Soc., 1952, 74, 2965.
- 31 V. Frenna, G. Macaluso, G. Consiglio, S. Guernelli and D. Spinelli, Collect. Czech. Chem. Commun., 1999, 64, 1877.
- 32 R. Noto, M. Gruttadauria, D. Dattolo, C. Arnone, G. Consiglio and D. Spinelli, J. Chem. Soc., Perkin Trans. 2, 1991, 1477.
- 33 P. De Maria, R. Noto, G. Consiglio and D. Spinelli, J. Chem. Soc., Perkin Trans. 2, 1989, 791.